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Stochastic Strings, Topology, 
and Space-Time Confinement 
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Stochastic space-time caused by random strings is considered. By using a con- 
formlike transformation of the metric, we reconstruct "gravitational" theory and 
derive its consequences. Such an approach permits us to find natural quark 
confinement due to induced gravitation and to take into account the topological 
structure of space-time in any physical quantity. 

Recently, much attention has been paid to the study of space-time 
structure at short distances. It has been assumed that at small distances 
space-time may take different structures, such as quantum or discrete 
(Wilson, 1974; Lee, 1983; Friedberg and Lee, 1983; Fradkin and Tseytlin, 
1985; Yamamoto, 1985; Banai, 1984, 1985; Fujiwara, 1980), foamlike 
(Wheeler, 1964; Hawking, 1978, 1983; Strominger, 1984; Misner et  al., 
1973), code (Finkelstein, 1969, 1972, 1974), cellular (Kirilov and Kochnev, 
1987; Cole, 1972), and so on. Among them the stochastic or fluctuational 
character of space-time may become the most probable candidate and the 
natural arena of future physical theory (for example, Namsrai, 1986; Prugo- 
vecki, 1984; and references therein). Indeed, if one believes in the quantum 
principle and Einstein's theory, then stochastic or fluctuational properties of 
space-time should inevitably appear in the microworld. 

Stochastic or quantum geometry plays an important role in representing 
gauge theories by random surfaces and strings (Polyakov, 1981; Gomez, 
1982) and in the construction of a unified theory of elementary particle 
interactions based on the theory of strings and superstrings [see, for details, 
Green et  al. (1987)]. 
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In this paper we present a simple scheme of introducing stochastic 
space-time induced by random strings. Let us consider a bosonic string, the 
motion of which can be described by a two-dimensional surface ~ known 
as the string world-sheet. The latter is embedded in a d-dimensional space- 
time (here we consider the case d= 4). The manifold J/ / is  parametrized by 
coordinates 

0"=0"~ 0"2=r} 

and is equipped with a metric tensor gab while space-time has coordinates 
xl'(r) and metric Gu~. 

Further, we propose that coordinates of strings y~(0") are random vari- 
ables, the behavior of which is described by a probability distribution 

P[y]=lexp{-~f~e,f.g2d20"~d20"2v/-~Jx/g-2Yn(0"1)D~(0"1-0"2)yV(0"2) } 
(1) 

where N is a constant chosen so that P[y] is normalized to unity and D ~  
is the inverse of the two-point correlation 

(yU (0-j)yV(0-2)> = D ~ ~(o'j - 0"2) (2) 

Our main assumption is that due to the presence of the random string 
field, space-time begins to fluctuate and its topological structure gives rise 
to changes in physical quantities at short distances. In order to introduce 
stochastic fluctuations in the metric induced by the random strings, we define 
the conformlike transformation of coordinates leading to the passage from 
the usual local inertial system of reference ~'~ with the Minkowski metric 
r/,p to the quasilocal system of "averaged" (pointlike) string coordinates 
x ~ : 

= (1/4  R ) 6 ( 0- ) x "  ( 0- + ( 0- , 

with an induced stochastic metric Guy(x, y). Here functions r/"(0- a) are some 
random variables of the same type ofyU(0-a). The variables ~ and x" depend 
on the proper time r. Let us consider the formal transformation 

(3) 



Stochastic Space-Time 45 

where Ris  the Ricci curvature scalar o f t h e m a n i f o l d J / a n d  U~(0-)is a unit 
vector 

-~"vU~(v)U~(v)= 1 (4) 

depending on the timelike variable 0 -2 = r only. The differential of the string 
coordinates is given by 

oy~(0-) 
&v(r) - ~ ~ R  ~;(~')a(0-2- 7) 

Here the appearance of the value R xfg follows from a dimensional argument 
and the normalization condition of S2(cr), which is integrated to 1 with 
measure d2cr x/g. 

Now the rectilinear trajectory of a particle given by the equation 

d2~ a 
dr----y=0, d~2=-qa#  d~ ~ d~ a (5) 

in the system of reference 4" takes the form 

d2 x't x dxu dxv 
dr  2 ~- r .~  ~ -~r = 0 (6) 

where F ~  is the affine connection-like quantity defined as 

, Ox ~ 02~ ~ 
F~-  (7) 

O~ a Ox"Ox ~ 

The proper time (5) may also be expressed in the system of reference x ~ with 
the stochastic metric G,~(x,  y)  by the formula 

~176 o~P ax ~ ax v (8) d~ "2= - r la  ~ Ox ~ Ox v 

or 

dT 2= -Guy(X,  )2) dx  v dx" (9) 

where Guv(x ,y )  is the stochastic metric defined as 

~ 04" 
G~v(x ,y )  = q~,  Ox u Ox v (10) 
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Making use of connection (3), we calculate the explicit form of (10) and 
verify its identify 

O~ ~ Ox ~ 
- ~ a ~ - ~  ( 1 1 )  6u or ~ u w  - ~u 

Ox ~ 0 ~  

Direct calculation gives 

where 

and 

0x u 0 ~ - [  ~+12  e ~ ] . A  (12) 

A=exp{~ x /~ ,  !~ d2cr x/g RUu(cr)yU(cr) } 

1 
~ ( x ) = ~ x " ( ~ ) v . ( O  

An inverse Jacobian of transformation with respect to (12) is 

0x x 
- A  [6a-~e,,(x)+~e,,(x)ep(x)--~e,,(x)ep(x)ea(x)+...] (13) 

Identities (12) and (13) allow us to define the metric tensor and its inverse 
by the formulas 

G u ~(x, y) = A2[ rlu v + F. u v(X) + 18~ (x) 8vp(X)] (14a) 

and 

GV"(x, y) = A-2[q v ' -  ev"(x) + ~e~O(x)e~(x) . . . .  ] (14b) 

It  is easily verified that 

G ~'~(x, y)Gt~(x, y) = 6~ 

Next it is necessary to carry out an averaging procedure in (14a) and 
(14b) over random variables y~ (ty) with the probability distribution (1). For 
the two-point correlation function (2) we use the white noise covariance 

;t 2 
DU"( al - or2) = - r f  'V ~ ~2( crl - erE) (15) 

4gR 
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where lluv=rl uv is the Minkowski metric tensor defined as rh, v=0 for 
= v and -7/o0 = r/l~ = r/22 = 1/33 = 1, and X is some constant dimension of 

length. Here we distinguish two possibilities: 

(a) X 2 ~ G 2, where G is the Newtonian constant. 
(b) A, 2 ~ (a ')  2, where a '  is the inverse string tension (a size of the string). 

The former means that fluctuation of the string coordinates takes place 
at the Planck scale, while the second case means that coordinates obey 
random properties in a domain characterized by the size of the string. 

Taking into account formulas (4) and (15) and using the Feynman rules 

(exp f d4x K(x)~,(x) ) =exp(~ f f d4x d'y K(x)A(x-y)K(y)) (16) 
we have 

(G~,v(X, y),,= [rh, v + e.~(x) +~e.(X)evp(X)l exp ~ d2~ ~ R (17) 
,.4r 

where 

1 f~,,d2tTx/~ R (18) Euler (J / )  =~--~ . 

is a topological invariant known as the Euler characteristic (or the Euler 
number) of ~ ' .  If  ~t' has genus N (i.e., if Jr is homeomorphic to a sphere 
with N handles, or to a connected sum of N tori), then 

Euler(~[) = 2 - 2N 

Thus, the physical space-time metric at large distances is obtained by a sum 
over equivalent topological structures, 

Gu~(x ) = ~', (Guy(x, y) )y=  [r/u~ + euv(x ) +�88 • I (19) 
N 

where the multiplier factor 

e 4a A, 2 
/ = - - -  A = - -  

1 - -  e - 4 a  ~ a '  

has appeared due to the topological structure of space-time at small 
distances. 

Further, by using the general covariant method (Weinberg, 1972) of 
the description of gravitational phenomena in space-time with stochastic 
and quantum metrics in the weak-field limit (Namsrai, 1991) having the 
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system of reference x u with metric (14a), we can easily construct the theory 
of induced "gravity" caused by random strings and to reanalyze its conse- 
quences. These results will be given elsewhere. Here we concentrate on two 
interesting facts. 

First, we know (Namsrai, 1991 ; Landau and Lifschitz, 1971) that due 
to stochastic fluctuation of the space-time metric (14), in the limiting case 
when the velocity of the quark particle is small, an additional nonrelativistic 
"potential" ~of also appears: 

~ =  icE(-- 1 -- Goo) (20) 

As the unit vector Uu(r ) in (4) we choose the four-velocity of the particle 
(quark) and derive that 

(q~f )=~  l + ~ l - ~  , a' 

in the stationary case. Thus, the induced force is 

Ff.~_Vq)f=(c2 ~nl e4A 
\ ,+rca' / 1 - - e  -4A' 

n = r / r  (21) 

where Pmax=mC and 
10 -13 cm. 

Second, when the quark particle moves in the constant fictitious "field" 
euv(x ) in (14) its averaged energy is defined as 

e a • 1 / 1/2 me2 me2 - ~ (1 x2 
E y - ~  -~/~G~=x/1-v2/c z _ 4~ra' 1 - v 2 / c  2] 

From this we immediately conclude that the quark undergoes a finite 
motion, the phase diagram (Figure 1) of which is defined as 

p2 x 2 
2 ~---5-- < 1 (22) 

p max Xmax 

X m a x = 2 ~ .  Assuming a'=m-; 2, we get Xmax = 

CONCLUSION 

Thus, we observe that due to stochastic fluctuation of the space-time 
metric caused by random strings the quarks are exactly confined inside the 
domain characterized by the string tension parameter a', and the force 
between them obeys the linear law distance. 
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Fig. 1. Phase diagram for a quark moving in the stochastic space-time induced by random 
strings. 
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